Modules whose finiteness dimensions coincide with their cohomological dimensions
نویسندگان
چکیده
Let a be an ideal of commutative Noetherian ring R with identity. We study finitely generated R-modules M whose a-finiteness and a-cohomological dimensions are equal. In particular, we examine relative analogues quasi-Buchsbaum, Buchsbaum surjective modules. reveal several interactions between these types modules that extend some the existing results in classical theory to one.
منابع مشابه
Cohomological Dimensions of Universal Cosovereign Hopf Algebras
We compute the Hochschild and Gerstenhaber-Schack cohomological dimensions of the universal cosovereign Hopf algebras, when the matrix of parameters is a generic asymmetry. Our main tools are considerations on the cohomologies of free product of Hopf algebras, and on the invariance of the cohomological dimensions under graded twisting by a finite abelian group.
متن کاملCell-like resolutions preserving cohomological dimensions
We prove that for every compactum X with dimZ X ≤ n ≥ 2 there is a cell-like resolution r : Z −→ X from a compactum Z onto X such that dim Z ≤ n and for every integer k and every abelian group G such that dimG X ≤ k ≥ 2 we have dimG Z ≤ k. The latter property implies that for every simply connected CW-complex K such that e − dimX ≤ K we also
متن کاملGeometric Diffeomorphism Finiteness in Low Dimensions and Homotopy Group Finiteness
Our main result asserts that for any given numbers C and D the class of simply connected closed smooth manifolds of dimension m < 7 which admit a Riemannian metric with sectional curvature bounded in absolute value by |K| ≤ C and diameter uniformly bounded from above by D contains only finitely many diffeomorphism types. Thus in these dimensions the lower positive bound on volume in Cheeger’s F...
متن کاملA study on dimensions of modules
In this article we study relations between some algebraic operations such as tensor product and localization from one hand and some well-known dimensions such as uniform dimension, hollow dimension and type dimension from the other hand. Some minor applications to the ring $C(X)$ are observed.
متن کاملHomological dimensions of complexes of R-modules
Let R be an associative ring with identity, C(R) be the category of com-plexes of R-modules and Flat(C(R)) be the class of all at complexes of R-modules. We show that the at cotorsion theory (Flat(C(R)); Flat(C(R))−)have enough injectives in C(R). As an application, we prove that for each atcomplex F and each complex Y of R-modules, Exti (F,X)= 0, whenever Ris n-perfect and i > n.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2022
ISSN: ['1873-1376', '0022-4049']
DOI: https://doi.org/10.1016/j.jpaa.2021.106900